1

PRODUCT OVERVIEW

OVERVIEW

Samsung's S3C8-series of 8-bit single-chip CMOS microcontrollers offers a fast and efficient CPU, a wide range of integrated peripherals, and various mask-programmable ROM sizes. Important CPU features include:

- Efficient register-oriented architecture
- Selectable CPU clock sources
- Idle and Stop power-down mode release by interrupt
- Built-in basic timer with watchdog function

A sophisticated interrupt structure recognizes up to eight interrupt levels. Each level can have one or more interrupt sources and vectors. Fast interrupt processing (within a minimum six CPU clocks) can be assigned to specific interrupt levels.

S3C80A4/C80A8/C80A5/C80B4/C80B8/C80B5 MICROCONTROLLER

The S3C80A4/C80A8/C80A5/C80B4/C80B8/C80B5 single-chip CMOS microcontroller is fabricated using a highly advanced CMOS process and is based on Samsung's newest CPU architecture.

The S3C80A4/C80A8/C80A5/C80B4/C80B8/C80B5 is the microcontroller which has mask-programmable ROM.

The S3P80A4/P80A8/P80B4/P80B8/P80B5 is the microcontroller which has one-time-programmable EPROM.

Using a proven modular design approach, Samsung engineers developed the S3C80A4/C80A8/C80A5/C80B4/C80B8/C80B5 by integrating the following peripheral modules with the powerful SAM87 RC core:

- Three programmable I/O ports, including two 8-bit ports and one 3-bit port, for a total of 19 pins.
- Internal LVD circuit and eight bit-programmable pins for external interrupts.
- One 8-bit basic timer for oscillation stabilization and watchdog functions (system reset).
- One 8-bit timer/counter and one 16-bit timer/counter with selectable operating modes.
- One 8-bit counter with auto-reload function and one-shot or repeat control.

The S3C80A4/C80A8/C80A5/C80B4/C80B8/C80B5 is a versatile general-purpose microcontroller which is especially suitable for use as remote transmitter controller. It is currently available in a 24-pin SOP and SDIP package.

FEATURES

CPU

SAM87RC CPU core

Memory

- Program memory (ROM)
 - S3C80A4/C80B4: 4-Kbyte (0000H–0FFFH)
 - S3C80A8/C80B8: 8-Kbyte (0000H–1FFFH)
 - S3C80A5/C80B5: 15,872 byte (0000H–3E00H)
- Data memory: 256-byte RAM

Instruction Set

- 78 instructions
- IDLE and STOP instructions added for powerdown modes

Instruction Execution Time

500 ns at 8-MHz f_{OSC} (minimum)

Interrupts

- 13 interrupt sources with 10 vector.
- 5 level, 10 vector interrupt structure

I/O Ports

- Two 8-bit I/O ports (P0-P1) and one 3-bit port (P2) for a total of 19 bit-programmable pins
- · Eight input pins for external interrupts

Carrier Frequency Generator

 One 8-bit counter with auto-reload function and one-shot or repeat control (Counter A)

Back-up mode

 When V_{DD} is lower than V_{LVD}, the chip enters Back-up mode to block oscillation and reduce the current consumption.

Timers and Timer/Counters

- One programmable 8-bit basic timer (BT) for oscillation stabilization control or watchdog timer function
- One 8-bit timer/counter (Timer 0) with two operating modes; Interval mode and PWM mode.
- One 16-bit timer/counter with one operating modes; Interval mode

Low Voltage Detect Circuit

- Low voltage detect for reset or Back-up mode.
- Low level detect voltage
 - S3C80A4/C80A8/C80A5: 2.20 V (Typ) ± 200 mV
 - S3C80B4/C80B8/C80B5:
 1.90 V (Typ) ± 200 mV

Auto Reset Function

- Reset occurs when stop mode is released by P0.
- When a falling edge is detected at Port 0 during Stop mode, system reset occurs.

Operating Temperature Range

• -40° C to $+85^{\circ}$ C

Operating Voltage Range

- 1.7 V to 3.6 V at 4 MHz f_{OSC}
- 2.0 V to 3.6 V at 8 MHz f_{OSC}

Package Type

24-pin SOP/SDIP

BLOCK DIAGRAM

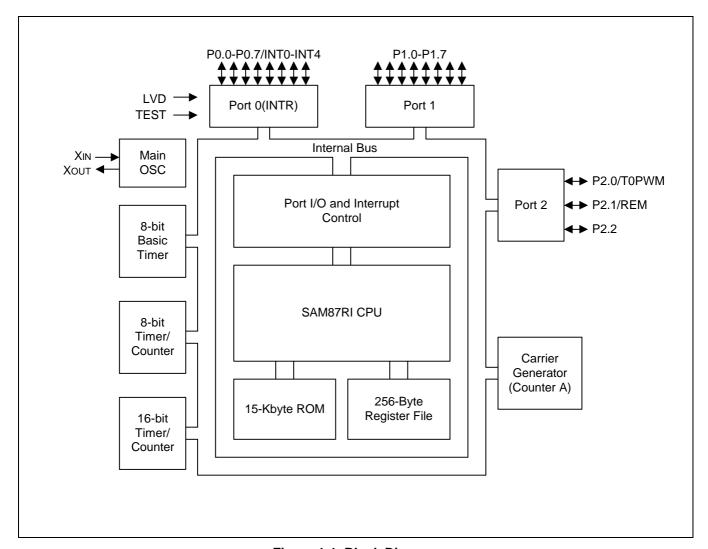


Figure 1-1. Block Diagram

PIN ASSIGNMENTS

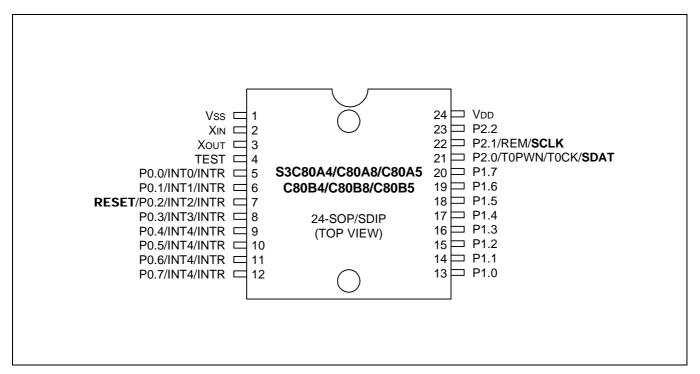


Figure 1-2. Pin Assignment Diagram (24-Pin SOP/SDIP Package)

PIN DESCRIPTIONS

Table 1-1. Pin Descriptions

Pin Names	Pin Type	Pin Description	Circuit Type	24-Pin Number	Shared Functions
P0.0-P0.7	I/O	I/O port with bit-programmable pins. Configurable to input or push-pull output mode. Pull-up resistors are assignable by software. Pins can be assigned individually as external interrupt inputs with noise filters, interrupt enable/ disable, and interrupt pending control. Interrupt with Reset(INTR) is assigned to Port 0.	1	5–12	INTO – INT4/INTR
P1.0-P1.7	I/O	I/O port with bit-programmable pins. Configurable to input mode or output mode. Pin circuits are either push-pull or n- channel open-drain type. Pull-up resistors are assignable by software.	2	13–20	
P2.0 P2.1 P2.2	I/O	3-bit I/O port with bit-programmable pins. Configurable to input mode, push-pull output mode, or n-channel open-drain output mode. Input mode with pull-up resistors are assignable by software. The two pins of port 2 have high current drive capability.	3 4 5	21–23	REM/T0CK
X _{IN} , X _{OUT}	_	System clock input and output pins	_	2, 3	-
TEST	I	Test signal input pin (for factory use only; must be connected to V _{SS}).	_	4	-
V _{DD}	-	Power supply input pin	_	24	-
V _{SS}	_	Ground pin	_	1	_

PIN CIRCUITS

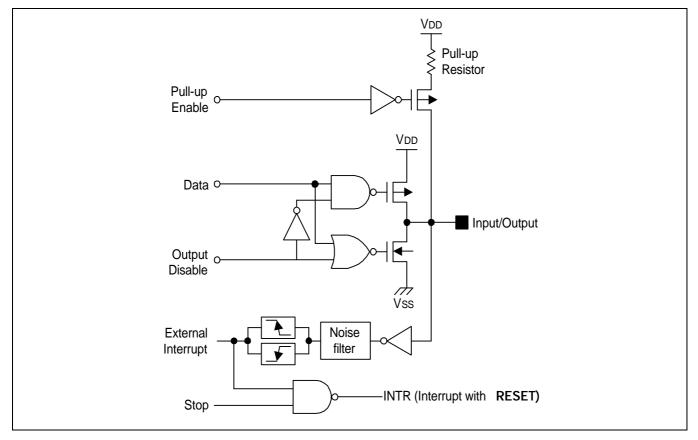


Figure 1-3. Pin Circuit Type 1 (Port 0)

NOTE

Interrupt with reset (INTR) is assigned to port 0 of S3C80A4/C80A8/C80A5/C80B4/C80B8/C80B5. It is designed to release stop status with reset. When the falling/rising edge is detected at any pin of Port 0 during stop status, non vectored interrupt INTR signal occurs, after then system reset occurs automatically. It is designed for a application which are using "stop mode" like remote controller. If stop mode is not used, INTR do not operates and it can be discarded.

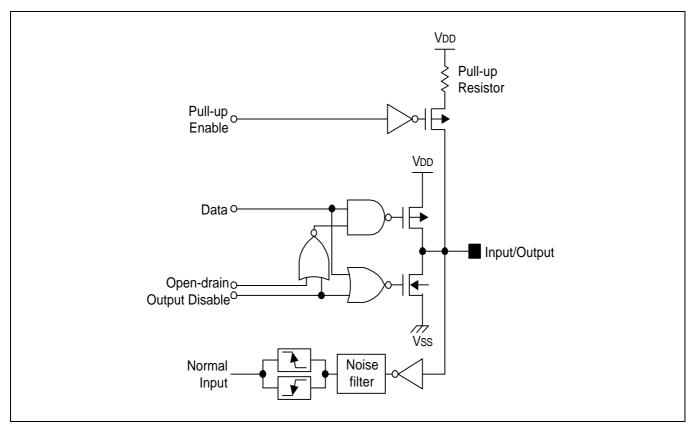


Figure 1-4. Pin Circuit Type 2 (Port 1)

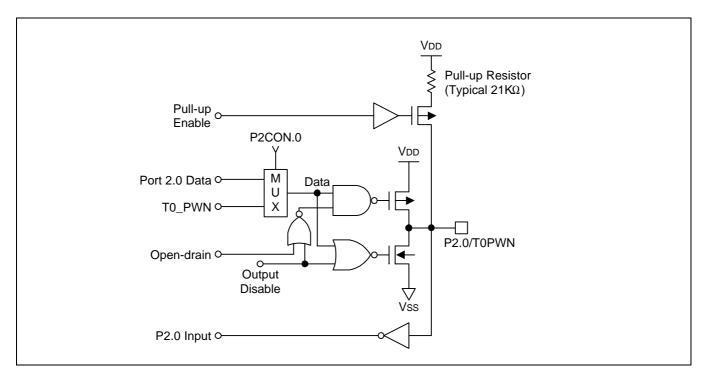


Figure 1-5. Pin Circuit Type 3 (P2.0)

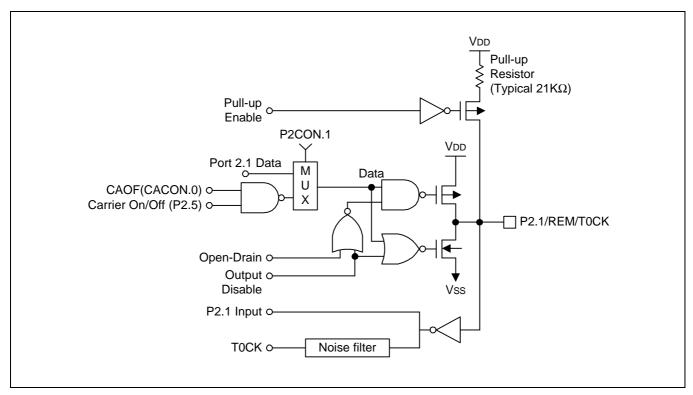


Figure 1-6. Pin Circuit Type 4 (P2.1)

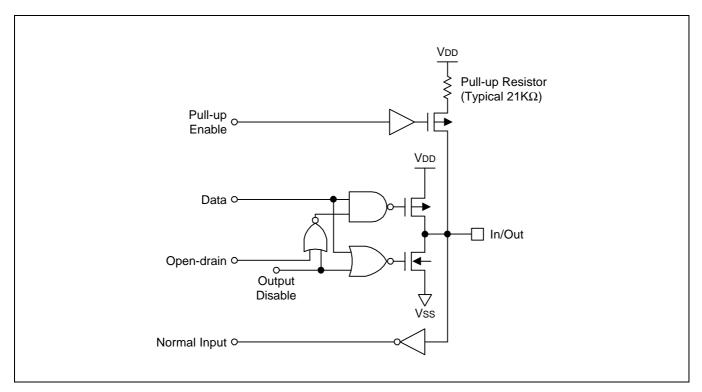


Figure 1-7. Pin Circuit Type 5 (P2.2)

13 ELECTRICAL DATA

OVERVIEW

In this section, S3C80A4/C80A8/C80A5/C80B4/C80B8/C80B5 electrical characteristics are presented in tables and graphs. The information is arranged in the following order:

- Absolute maximum ratings
- D.C. electrical characteristics
- Data retention supply voltage in Stop mode
- Stop mode release timing when initiated by a Reset
- I/O capacitance
- A.C. electrical characteristics
- Input timing for external interrupts (port 0)
- Oscillation characteristics
- Oscillation stabilization time

Table 13-1. Absolute Maximum Ratings

 $(T_A = 25 \,^{\circ}C)$

Parameter	Symbol	Conditions	Rating	Unit
Supply voltage	V _{DD}	-	-0.3 to +6.5	V
Input voltage	V _{IN}	-	-0.3 to $V_{DD} + 0.3$	V
Output voltage	Vo	All output pins	-0.3 to $V_{DD} + 0.3$	V
Output current High	I _{OH}	One I/O pin active	– 18	mA
		All I/O pins active	- 60	
Output current Low	I _{OL}	One I/O pin active	+ 30	mA
		Total pin current for ports 0, 1, and 2	+ 100	
		Total pin current for port 3	+ 40	
Operating temperature	T _A	_	- 40 to + 85	°C
Storage temperature	T _{STG}	_	- 65 to + 150	°C

Table 13-2. D.C. Electrical Characteristics

 $(T_A = -40 \,^{\circ}\text{C} \text{ to } + 85 \,^{\circ}\text{C}, \, V_{DD} = 2.0 \,^{\circ}\text{V} \text{ to } 3.6 \,^{\circ}\text{V})$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operating Voltage	V_{DD}	f _{OSC} =8MHz (Instruction clock = 1.33 MHz)	2.0	-	3.6	V
		f _{OSC} = 4MHz (Instruction clock = 0.67 MHz)	1.7	-	3.6	
Input High voltage	V _{IH1}	All input pins except $V_{\rm IH2}$ and $V_{\rm IH3}$	0.8 V _{DD}	-	V _{DD}	٧
	$V_{\rm IH2}$	X _{IN}	V _{DD} - 0.3		V_{DD}	
Input Low voltage	V _{IL1}	All input pins except $V_{\rm IL2}$ and $V_{\rm IL3}$	0	-	0.2 V _{DD}	V
	V _{IL2}	X _{IN}			0.3	
Output High voltage	V _{OH1}	V_{DD} = 2.4 V, I_{OH} = -6 mA Port 2.1 only, T_A = 25°C	V _{DD} - 0.7			V
	V _{OH2}	$V_{DD} = 2.4 \text{ V}, I_{OH} = -2.2 \text{mA}$ Port 2.0, 2.2, $T_{A} = 25 ^{\circ}\text{C}$	V _{DD} - 0.7	-	_	
	V _{OH3}	$V_{DD} = 2.4 \text{ V}, I_{OH} = -1 \text{ mA}$ All output pins except Port2,	V _{DD} ₋ 1.0	-	-	
		$T_A = 25 ^{\circ}C$				

Table 13-2. D.C. Electrical Characteristics (Continued)

 $(T_A = -40 \,^{\circ}C \text{ to } + 85 \,^{\circ}C, V_{DD} = 2.0 \,^{\circ}V \text{ to } 3.6 \,^{\circ}V)$

Parameter Symbol Conditions		Conditions	Min	Тур	Max	Unit	
Output Low voltage	V _{OL1}	$V_{DD} = 2.4 \text{ V}, I_{OL} = 12 \text{ mA, port}$ 2.1 only, $T_A = 25 ^{\circ}\text{C}$		0.4	0.5		
	V _{OL2}	$V_{DD} = 2.4 \text{ V}, I_{OL} = 5 \text{ mA}$ Port 2.0,2.2, $T_A = 25 \text{ °C}$	_	0.4	0.5		
	V _{OL3}	$I_{OL} = 1 \text{ mA}$ Ports 0 and 1, $T_A = 25 ^{\circ}\text{C}$		0.4	1.0		
Input High leakage current	I _{LIH1}	$V_{IN} = V_{DD}$ All input pins except X_{IN} and X_{OUT}	_	_	1	μА	
	I _{LIH2}	$V_{IN} = V_{DD}$, X_{IN} and X_{OUT}			20		
Input Low leakage current	I _{LIL1}	$V_{IN} = 0 V$ All input pins except X_{IN} , X_{OUT}	_	-	- 1	μA	
	I _{LIL2}	$V_{IN} = 0 V$ X_{IN} and X_{OUT}			- 20		
Output High leakage current	I _{LOH}	V _{OUT} = V _{DD} All output pins	_	-	1	μA	
Output Low leakage current	I _{LOL}	V _{OUT} = 0 V All output pins	_	-	- 1	μA	
Pull-up resistors	R _{L1}	$V_{DD} = 2.4V, V_{IN} = 0 V;$ $T_A = 25 °C, Ports 0-2$	44	55	95	ΚΩ	
Supply current (note)	I _{DD1}	V_{DD} = 3.6 V \pm 10% 8-MHz crystal	_	5	9	mA	
		4-MHz crystal		2.6	5		
	I _{DD2}	Idle mode; V_{DD} = 3.6 V \pm 10 % 8-MHz crystal	_	1.0	2.5		
		4-MHz crystal		0.7	2.0		
	I _{DD3}	Stop mode; V _{DD} = 3.6 V	_	1	6	uA	

NOTE: Supply current does not include current drawn through internal pull-up resistors or external output current loads.

Table 13-3. Characteristics of Low Voltage Detect circuit

 $(T_A = -40 \,^{\circ}\text{C to} + 85 \,^{\circ}\text{C})$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Hysteresys Voltage of LVD (Slew Rate of LVD)	ΔV	_	_	30	300	mV
Low level detect voltage (S3C80A4/C80A8/C80A5)	V _{LVD}	_	2.0	2.20	2.40	V
Low level detect voltage (S3C80B4/C80B8/C80B5)	V _{LVD}	_	1.70	1.90	2.1	V

Table 13-4. Data Retention Supply Voltage in Stop Mode

 $(T_A = -40 \,^{\circ}\text{C to} + 85 \,^{\circ}\text{C})$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Data retention supply voltage	V_{DDDR}	_	1.0	_	3.6	V
Data retention supply current	I _{DDDR}	V _{DDDR} = 1.0 V Stop mode	_	_	1	μΑ

Table 13-5. Input/output Capacitance

 $(T_A = -40^{\circ}C \text{ to } + 85^{\circ}C, V_{DD} = 0 \text{ V})$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Input capacitance	C _{IN}	f = 1 MHz; unmeasured pins are connected to V _{SS}		1	10	pF
Output capacitance	C _{OUT}					
I/O capacitance	C _{IO}					

Table 13-6. A.C. Electrical Characteristics

 $(T_A = -40 \,^{\circ}C \text{ to } + 85 \,^{\circ}C)$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Interrupt input, High, Low width	t _{INTH} , t _{INTL}	P0.0–P0.7, $V_{DD} = 3.6 \text{ V}$	200	300	_	ns

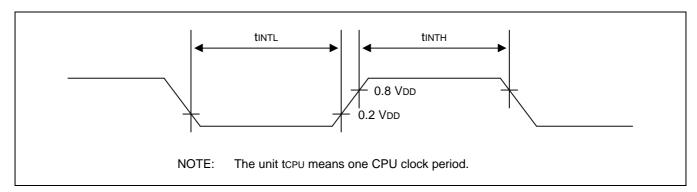


Figure 13-1. Input Timing for External Interrupts (Port 0)

Table 13-7. Oscillation Characteristics

$$(T_A = -40 \,^{\circ}C + 85 \,^{\circ}C)$$

Oscillator	Clock Circuit	Conditions	Min	Тур	Max	Unit
Crystal	C1 XIN XOUT	CPU clock oscillation frequency	1	-	8	MHz
Ceramic	C1 XTIN XTOUT C2	CPU clock oscillation frequency	1	-	8	MHz
External clock	External Clock XIN XIN XOUT	X _{IN} input frequency	1	_	8	MHz

Table 13-8. Oscillation Stabilization Time

 $(T_A = -40 \,^{\circ}C + 85 \,^{\circ}C, V_{DD} = 3.6 \,V)$

Oscillator	Test Condition	Min	Тур	Max	Unit
Main crystal	f _{OSC} > 400 kHz	_	_	20	ms
Main ceramic	Oscillation stabilization occurs when V _{DD} is equal to the minimum oscillator voltage range.	_	_	10	ms
External clock (main system)	X_{IN} input High and Low width (t_{XH}, t_{XL})	25	_	500	ns
Oscillator stabilization wait time	t _{WAIT} when released by a reset ⁽¹⁾	_	2 ¹⁶ / f _{OSC}	_	ms
	t _{WAIT} when released by an interrupt ⁽²⁾	_	_	_	ms

NOTES:

- 1. $f_{\mbox{OSC}}$ is the oscillator frequency.
- 2. The duration of the oscillation stabilization time (t_{WAIT}) when it is released by an interrupt is determined by the setting in the basic timer control register, BTCON.

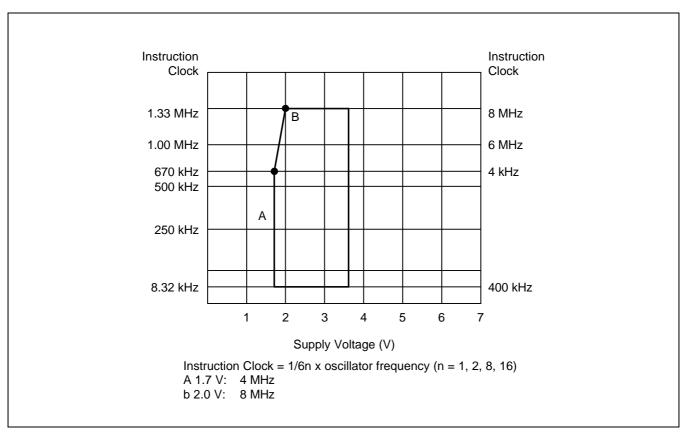


Figure 13-2. Operating Voltage Range of S3C80A4/C80A8/C80A5/C80B4/C80B8/C80B5

14

MECHANICAL DATA

OVERVIEW

The S3C80A4/C80A8/C80A5/C80B4/C80B8/C80B5 microcontroller is currently available in a 24-pin SOP and SDIP package.

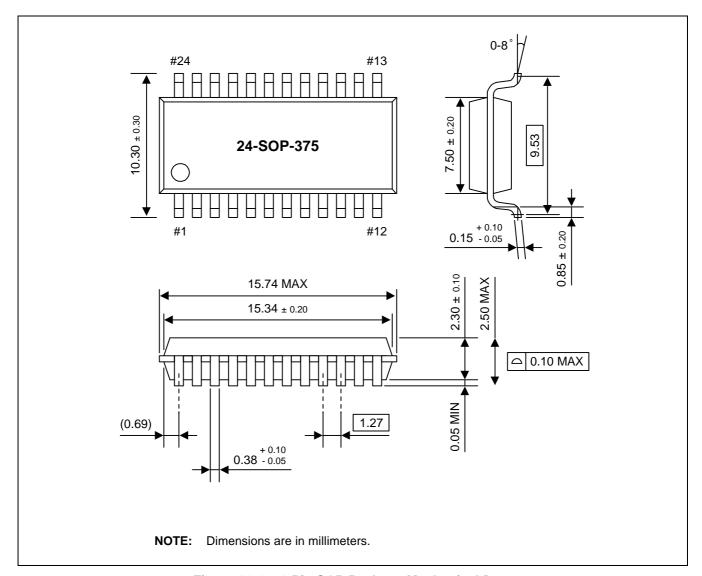


Figure 14-1. 24-Pin SOP Package Mechanical Data

14-1

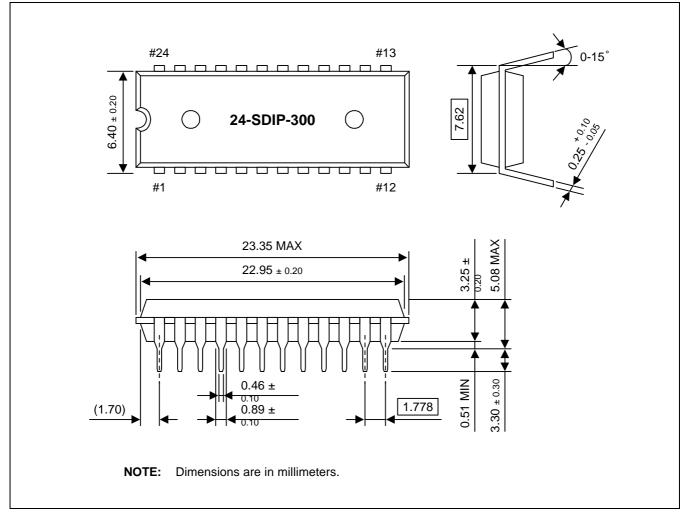


Figure 14-2. 24-Pin SDIP Package Mechanical Data

